Exam Lie Groups in Physics

Date

November 4, 2019

Room

BB 5161.0165

Time

15:00 - 18:00

Lecturer

D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the **four** problems are given below
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

Result
$$=\frac{\sum points}{10} + 1$$

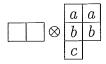
Problem 1

- (a) Consider the sets of real numbers R and positive real numbers R⁺. Indicate the composition laws under which these sets form Lie groups. Explain your answers and explain why division cannot be a composition law.
- (b) Show that $R \cong R^+$.
- (c) Show that $R/Z \cong U(1)$, where Z denotes the group of integers and U(1) the group of unitary 1×1 matrices.
- (d) Consider the cosets of U(1) in the group $G = \mathbb{C}\setminus\{0\}$ of nonzero complex numbers. Show which group is formed by G/U(1).

Problem 2

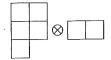
Consider the Lie algebra su(n) of the Lie group SU(n) of unitary $n \times n$ matrices with determinant equal to 1.

(a) Consider the following direct product of irreps of the Lie algebra su(n):



Write down all allowed sequences ("words") consisting of the letters a, a, b, b, c.

- (b) Decompose the above direct product of irreps into a direct sum of irreps of su(n), in other words, determine its Clebsch-Gordan series.
- (c) Do the same direct product but now in reverse order:



(d) Write down the dimensions of the irreps appearing in the obtained decomposition for su(3) and su(4). Indicate the complex conjugate and inequivalent irreps whenever appropriate.

Problem 3

Consider the Cartan matrix $A_{ij} = \frac{2\alpha_i \cdot \alpha_j}{\alpha_i \cdot \alpha_i}$, where the α_i denote the simple roots, for the complex Lie algebra $\widetilde{sp}(2)$:

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \dots$$

- (a) Use this matrix to obtain the root diagram of $\widetilde{sp}(2)$ by using Weyl reflections.
- (b) Deduce the dimension of the Lie algebra $\widetilde{sp}(2)$, of its compact real form sp(2) and of the corresponding Lie group.

Problem 4

Consider the group of Lorentz transformations $L^{\mu}_{\ \nu}$.

(a) Demonstrate that invariance of the Minkowski metric under Lorentz transformations implies that $(L_0^0)^2 \ge 1$.

Consider the Lorentz algebra given by

$$\left[J^j,J^k\right]=i\epsilon_{jkl}J^l,\quad \left[J^j,K^k\right]=i\epsilon_{jkl}K^l,\quad \left[K^j,K^k\right]=-i\epsilon_{jkl}J^l.$$

(b) Show by explicit calculation that the following two operators are Casimir operators of the Lorentz group, i.e. commute with all the generators of the Lorentz algebra:

$$C_1 = \vec{J}^2 - \vec{K}^2, \quad C_2 = 2\vec{J} \cdot \vec{K}$$

(c) Explain why the Casimir operators can be used to label the irreducible representations.